Product: Management and Development
https://www.pmd.igdp.org.br/journal/pmd/article/doi/10.4322/pmd.2018.003
Product: Management and Development
Original Article

Use of the Digital Factory for simulation and analysis of working methods in automotive manufacturing cell

Samilla Thalitta Macedo da Silva, Guilherme Canuto da Silva, Paulo Carlos Kaminski

Downloads: 2
Views: 1266

Abstract

The Digital Factory (DF) can be defined as a set of software oriented to the development of production processes, from the design and planning to the implementation of such processes. This work presents an update of a theoretical background and applications of DF concepts for modeling in a virtual environment of an automaker’s manufacturing cell. In this cell, the operator assembles a turn signal switch of different car models, which requires him to move and bring the assembly components to a workbench. Tecnomatix Jack ergonomics software was used to simulate three methods of displacement of an avatar with Brazilian height and weight parameters, with a cycle time of one min as a boundary condition. The results in terms of cycle time (s) and metabolism (kcal) are presented and analyzed.

Keywords

Digital Factory; digital human models; human-machine interaction

References

AMÉRICO, A.; ANTÓNIO, A. Factory templates for digital factories framework. Robotics and Computer-integrated Manufacturing, v. 27, n. 4, p. 755-771, 2011.

BRACHT, U.; GECKLER, D.; WENZEL, S. Digitale Fabrik. Methoden und Praxisbeispiele. New York: SpringerVerlag Berlin Heidelberg, 2011.

CHANDRASEGARAN, S. K. et al. The evolution, challenges, and future of knowledge representation in product design systems. Computer Aided Design, v. 45, n. 2, p. 204-228, 2013.

CHOI, S.; KIM, B.; NOH, S. A diagnosis and evaluation method for strategic planning and systematic design of a virtual factory in smart manufacturing systems. International Journal of Precision Engineering and Manufacturing, v. 16, n. 6, p. 1107-1115, 2015.

DEUSE, J. et al. A customizable digital human model for assembly system design. Advances in Intelligent Systems and Computing, v. 490, p. 167-178, 2016.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Pesquisa de orçamentos familiares 2008-2009: antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil. Rio de Janeiro: IBGE, 2010.

KIM, G. Y. et al. Digital factory wizard: an integrated system for concurrent digital engineering in product lifecycle management. International Journal of Computer Integrated Manufacturing, v. 23, n. 11, p. 1028-1045, 2010.

KRÜCKHANS, B.; MEIER, H. Industrie 4.0 - Handlungsfelder der Digitalen Fabrik zur Optimierung der Ressourceneffizienz in der Produktion. Simulation in Produktion und Logistik, Entscheidungsunterstützung von der Planung bis zur Steuerung, p. 31-40, 2013.

MAROPOULOS, P. Digital enterprise technology-defining perspectives and research priorities. International Journal of Computer Integrated Manufacturing, v. 16, n. 7-8, p. 467-478, 2003. OU, H.; ZOU, T. The application of digital factory in domestic chemical industry. In: CHINESE CONTROL AND

DECISION CONFERENCE, 27., 2015, Qingdao, China. Proceedings… USA: IEEE, 2015. p. 4305-4308.

POLÁSEK, P.; BURES, M.; SIMON, M. Comparison of Digital Tools for ergonomics in practice. Procedia Engineering, v. 100, p. 1277-1285, 2015.

SANTOS, W. R. et al. Análise do uso integrado de um sistema de captura de movimentos com um software de modelagem e simulação humana para incorporação da perspectiva da atividade. Gestão & Produção, v. 23, n. 3, p. 612-624, 2016.

SCIENCE DIRECT. Available from: . Access in: 20 de maio de 2016. SCOPUS. Available from: . Access in: 22 de maio de 2016.

SIEMENS. The use of Tecnomatix will help shorten a car’s project time. Munique: Siemens, 2014.

SILVA, G. C.; KAMINSKI, P. C. Application of digital factory concepts to optimise and integrate inventories in automotive pre-assembly areas. International Journal of Computer Integrated Manufacturing, 2014.

SILVA, G. C.; KAMINSKI, P. C. From Embedded Systems (ES) to Cyber-Physical Systems (CPS): an analysis of transitory stage of automotive manufacturing in the Industry 4.0 scenario. Canada: SAE International, 2016. SAE Technical Paper 2016-36-0230.

SILVA, G. C.; KAMINSKI, P. C. Proposal of framework to managing the automotive product development process. Cogent Engineering, v. 4, n. 1317318, p. 1-25, 2017.

SILVA, G. C.; KAMINSKI, P. C.; GRUBER, G. Usage of Digital Factory in the analysis of automotive production scenarios: available software and resources. Canada: SAE International, 2014. SAE Technical Paper 2014-36-0329.

SILVA, G. C.; SOUZA, L. M.; KAMINSKI, P. C. Simulation of human-machine interaction in an automotive manufacturing cell using Digital Factory (DF). Product: Management & Development, v. 14, n. 2, p. 133-140, 2016.

SPRINGER LINK. Available from: . Access in: 20 de maio de 2016

VEREIN DEUTSCHER INGENIEURE – VDI. VDI 4499: Blatt 1/Part 1- Digitale Fabrik Grundlagen. Düsseldorf: VDI, 2008. 52 p.

WEBER, J. Automotive development processes: processes for successful customer oriented vehicle development. Berlin: Springer-Verlag Berlin, 2009.

WEGNER, D. et al. Digital human modeling requirements and standardization 2007-01-2498. Canada: SAE International, 2007. SAE Technical Paper.

5b87ebf50e88258a35e4c89d pmd Articles
Links & Downloads

Product

Share this page
Page Sections