Product: Management and Development
https://www.pmd.igdp.org.br/article/doi/10.4322/pmd.2022.020
Product: Management and Development
Research Article

Systematic assessment of simulation software for assembly lines in Industry 4.0 context

Jacopo Lettori, Milton Borsato, Roberto Raffaeli, Marcello Pellicciari, Margherita Peruzzini

Downloads: 0
Views: 402

Abstract

Nowadays, the layout, tasks, and work sequences of assembly lines are designed according to several Design Principles (DPs) related to Industry 4.0 (I4.0). I4.0 is a manufacturing process revolution that includes innovative technologies and new paradigms among systems and operators. A vast collection of simulation software can be used to evaluate I4.0assembly lines. In this context, the paper aims to provide a framework for guiding the assessment of simulation software in the context of I4.0assembly lines. First, process requirements are evaluated and mapped to select DPs, prioritized according to design goals by an analytical hierarchy process. Then, suitable simulation software is selected accordingly, and the virtual model is designed. Finally, the possibility of the software providing meaningful elaborations for the selected DPs is assessed. The framework was applied to a prototypal I4.0assembly line composed of automated logistic systems, cobots, and vision systems to guide the execution of tasks. The assembly line has been modeled in Siemens Process Simulate. The functionalities of this software have been analyzed according to the defined DPs.

Keywords

decision support tools, interactive simulation for engineering, industry 4.0, design principles.

References

Al-Jaroodi, J., Mohamed, N., & Jawhar, I. (2018). A service-oriented middleware framework for manufacturing industry 4.0. ACM SIGBED Review, 15(5), 29-36. http://dx.doi.org/10.1145/3292384.3292389.

Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 3(4), 16-21. http://dx.doi.org/10.24840/2183-0606_003.004_0003.

Azadeh, A., Nazari-Shirkouhi, S., Samadi, H., & Nazari-Shirkouhi, A. (2014). An integrated fuzzy group decision making approach for evaluation and selection of best simulation software packages. International Journal of Industrial and Systems Engineering, 18(2), 256-282. http://dx.doi.org/10.1504/IJISE.2014.064709.

Bard, J. F., Silva, A., & Bergevin, A. (1997). Evaluating simulation software for postal service use: technique versus perception. IEEE Transactions on Engineering Management, 44(1), 31-42. http://dx.doi.org/10.1109/17.552806.

Cafasso, D., Calabrese, C., Casella, G., Bottani, E., & Murino, T. (2020). Framework for selecting manufacturing simulation software in industry 4.0 environment. Sustainability, 12(15), 5909. http://dx.doi.org/10.3390/su12155909.

Dalmarco, G., Ramalho, F. R., Barros, A. C., & Soares, A. L. (2019). Providing industry 4.0 technologies: the case of a production technology cluster. The Journal of High Technology Management Research, 30(2), 100355. http://dx.doi.org/10.1016/j.hitech.2019.100355.

De Paula Ferreira, W., Armellini, F., & De Santa-Eulalia, L. A. (2020). Simulation in industry 4.0: a state-of-the-art review. Computers & Industrial Engineering, 149, 106868. http://dx.doi.org/10.1016/j.cie.2020.106868.

Efatmaneshnik, M., Shoval, S., & Qiao, L. (2020). A standard description of the terms module and modularity for systems engineering. IEEE Transactions on Engineering Management, 67(2), 365-375. http://dx.doi.org/10.1109/TEM.2018.2878589.

Fumagalli, L., Polenghi, A., Negri, E., & Roda, I. (2019). Framework for simulation software selection. Journal of Simulation, 13(4), 286-303. http://dx.doi.org/10.1080/17477778.2019.1598782.

Grandi, F., Cavallaro, S., Peruzzini, M., Raffaeli, R., & Pellicciari, M. (2021). Benchmark on human simulation tools: a transdisciplinary approach. In L. Newnes (Eds.), Transdisciplinary engineering for resilience: responding to system disruption (Vol. 16, pp. 345-354). Amsterdam: IOS Press BV.

Grandi, F., Peruzzini, M., Zanni, L., & Pellicciari, M. (2019). An automatic procedure based on virtual ergonomic analysis to promote human-centric manufacturing. Procedia Manufacturing, 38, 488-496. http://dx.doi.org/10.1016/j.promfg.2020.01.062.

Greco, S., Matarazzo, B., & Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129(1), 1-47. http://dx.doi.org/10.1016/S0377-2217(00)00167-3.

Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences, 2016-March, Koloa, HI, USA. (pp. 3928-3937). USA: IEEE. https://doi.org/10.1109/HICSS.2016.488

Iaksch, J. S., & Borsato, M. (2019). Method for digital evaluation of existing production systems adequacy to changes in product engineering in the context of the automotive industry. Advanced Engineering Informatics, 42, 100942. http://dx.doi.org/10.1016/j.aei.2019.100942.

Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: improving the materials selection process in engineering design. Materials & Design, 65, 335-342. http://dx.doi.org/10.1016/j.matdes.2014.09.022.

Mabkhot, M. M., Al-Ahmari, A. M., Salah, B., & Alkhalefah, H. (2018). Requirements of the smart factory system: a survey and perspective. Machines, 6(2), 23. http://dx.doi.org/10.3390/machines6020023.

Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: literature review and analysis. Journal of Manufacturing Systems, 33(2), 241-261. http://dx.doi.org/10.1016/j.jmsy.2013.12.007.

Peruzzini, M., Grandi, F., & Pellicciari, M. (2020). Exploring the potential of Operator 4.0 interface and monitoring. Computers & Industrial Engineering, 139, 105600. http://dx.doi.org/10.1016/j.cie.2018.12.047.

Radziwon, A., Bilberg, A., Bogers, M., & Madsen, E. S. (2014). The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Engineering, 69, 1184-1190.

Rincon, G., Alvarez, M., Perez, M., & Hernandez, S. (2005). A discrete-event simulation and continuous software evaluation on a systemic quality model: an oil industry case. Information & Management, 42(8), 1051-1066. http://dx.doi.org/10.1016/j.im.2004.04.007.

Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., & Gorecky, D. (2016). Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In Proceedings of the International Conference on Computers and Industrial Engineering (pp. 1-11). Tianjin: Computers & Industrial Engineering.

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, 9(1), 54-89.

Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). Pittsburgh: RWS publications.

Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., & Jozinović, P. (2015). Industry 4.0-potentials for creating smart products: Empirical research results. In W. Abramowicz (Ed.), International Conference on Business Information Systems (pp. 16–27). Cham: Springer. https://doi.org/10.1007/978-3-319-19027-3_2

Singh, A. (2012). An overview of the optimization modelling applications. Journal of Hydrology (Amsterdam), 466, 167-182.

Tecnomatix-Process Simulate. (2022). Retrieved in 2022, October 24, from https://www.plm.automation.siemens.com/global/en/products/tecnomatix/

Tiwari, S. (2020). Supply chain integration and Industry 4.0: a systematic literature review. Benchmarking, 28(3), 585-607. http://dx.doi.org/10.1108/JEIM-05-2018-0106.

Wegner, P. (1996). Interoperability. ACM Computing Surveys, 28(1), 285-287. 


Submitted date:
10/24/2022

Accepted date:
11/30/2022

6399de3fa953950a6e3741b4 pmd Articles
Links & Downloads

Product

Share this page
Page Sections